
International Journal of Computer Science & Emerging Technologies (IJCSET) 175

Volume 1 Issue 2, August 2010



Abstract- While doing a study of Operating System one

can easily learn theoretical concepts but if anyone wants

to study an actual operating system code there is only

one way that is the documentation which comes with an

operating system source code. As you can easily

download a Linux source code, you will found that very

less document is available for doing a study of Virtual

Memory manager .Practically if any one wants to study

the techniques used in designing an Operating System

then it will take a long time to understand the

implementation. So what I have done in my project is

that the detail documentation of kernel code from

virtual memory management point of view is presented

to those who wants to study an VM part of an

operating system Linux kernel 2.6.31.

 This project deals with the study of Virtual Memory

Manager in Linux kernel 2.6.31 and some comparative

conclusions between 2.4 and 2.6 kernel features.

Index Terms—page allocator, anonymous memory ,page

cache ,memory allocators , Copy on Write (CoW).

I. INTRODUCTION

 The memory management subsystem is one of the

most important parts of the operating system. Since the

early days of computing, there has been a need for more

memory than exists physically in a system. Strategies

have been developed to overcome this limitation and

the most successful of these is virtual memory. Virtual

memory makes the system appear to have more

memory than it actually has by sharing it between

competing processes as they need it. Virtual memory is

implemented in Linux with secondary storage disks as

extension so that the memory size can be increased

according to program need though system have

physical RAM size less. The kernel will write the

 Archana S. Sumant is with the Veermata Jijabai Technological Institute

,Matunga , Mumbai 400019 (INDIA).

Phone: +91 9503666033

Email: archana.s.vaidya@gmail.com

Pramila M.Chawan, is with the Veermata Jijabai Technological Institute ,

Matunga,Mumbai 400019 (INDIA).

Phone: +91 9869074620

Email: pmchawan@vjti.org.in

contents of a currently unused block of memory to the

hard disk so that the memory can be used for another

purpose. When the original contents are needed again,

they are read back into memory. This is all made

completely transparent to the user; programs running

under Linux only see the larger amount of memory

available and don't notice that parts of them reside on

the disk from time to time.

 Memory management is one of the most complex

and at the same time most important parts of the kernel.

It is characterized by the strong need for cooperation

between the processor and the kernel because the tasks

to be performed require them to collaborate very closely

[9].

 Figure 1 gives a conceptual overview on how basic

Linux memory management works. Central to all

memory management is the page allocator. The page

allocator can hand out pieces of memory in chunks of

page size bytes. The page size is fixed in hardware at 4

KBytes for i386, x64 and many other architectures. The

page size is configurable on several platforms. On

Itanium the page size is usually configured to be 16k.

All other memory allocators are in one way or another

based on the page allocator and take pages out of the

pool of pages managed by the page allocator. The page

allocator may provide pages that are mapped into a

processes virtual address space. There are two ways that

pages mapped into user space are used.The first type of

pages is used for anonymous memory. These are pages

for temporary use while a process is running. They are

not associated with any file and are typically used for

variables, the heap and the stack. Anonymous memory

is light weight and can be managed in a more efficient

way than file backed pages because no mappings to disk

(which require serialization to access) have to be

maintained.

Anonymous memory is private to a process (hence the

name) and will be freed when a process terminates.

Anonymous memory may be temporarily moved to disk

(swapping) if memory becomes very tight. However, at

that point an anonymous page acquires a reference to

swap space and therefore a mapping to secondary

Commenting the Virtual Memory Management

Kernel Source Code 2.6.31 for Educational Purpose

Archana S. Sumant , Pramila M.Chawan

International Journal of Computer Science & Emerging Technologies (IJCSET) 176

Volume 1 Issue 2, August 2010

storage, which adds overhead to the future processing

of this page.

Figure 1 : Linux Memory Subsystems

The page cache or buffers are pages that have an

associated page on a secondary storage medium such as

a disk. Page cache pages can be removed if memory

becomes tight because their content can be restored by

reading the page from disk. Most important is that the

page cache contains the executable code for a process.

A process may map additional files into its address

space via the mmap() system call. Both the executable

code and the mapped files are directly addressable via

virtual addresses from the user process. The operating

system may also maintain buffers in the page cache that

are not mapped into the address space of a process. This

frequently occurs if a process manipulates files through

system calls like sys_write(), sys_read() that read and

modify the contents of files. The unmapped pages may

be also thought as belonging in some loose form to a

process. However, all page cache pages may be mapped

or accessed by multiple processes and therefore the

ownership of these pages cannot be clearly established.

 The kernel core itself may need pages in order to

store meta data. For example file systems may use

buffers to track the location of sections of a file on disk,

pages may be used to establish the virtual to physical

address mappings (page tables) and so on. The kernel

also needs to allocate memory for structures of varying

sizes that are not in units of the page size in use on the

system. For that purpose the slab allocator is used. The

slab allocator retrieves individual pages or contiguous

ranges of pages from the page allocator but then uses its

own control structures to be able to hand out memory

chunks of varying sizes as requested by the kernel or

drivers. The slab allocator employs a variety of caching

techniques that result in high allocation performance for

small objects. Slab allocations are used to build up

structures that maintain the current system state. This

includes information about open files, recently used

filenames and a variety of other state objects.

 The device drivers utilize both the page allocator

and the slab allocator to allocate memory to manage

devices. There are a couple of additional variations on

page sized allocations for device drivers. First there is

the vmalloc subsystem. Vmalloc allows the allocation

of larger chunks of memory that appear to be virtually

contiguous within kernel context but the actual pages

constituting this allocation may not be physically

contiguous. Therefore vmalloc can generate a virtually

contiguous memory for large chunks of memory even if

the page allocator cannot satisfy request for large

contiguous chunks of memory anymore because

memory has become fragmented. Accesses to memory

obtained via the vmalloc allocator must use a page table

to translate the virtual addresses to physical addresses

and may be not as efficient as using a direct physical

address as handed out from the page allocator. Vmalloc

memory may not be mapped into user space. Finally,

the PCI subsystem itself may can be used by a device

driver to request memory that is suitable for DMA

transfers for a given device via dma_alloc_coherent().

The way of obtaining that type of memory varies with

the type of underlying hardware and therefore the

allocation technique varies for each platform supported

by Linux.

International Journal of Computer Science & Emerging Technologies (IJCSET) 177

Volume 1 Issue 2, August 2010

Table 1 Basic Memory Allocators under Linux

Table 1 gives an overview of the basic memory

allocators under Linux:

II. COMMENTORY ON KERNEL CODE

 To get a comprehensive view on how the kernel

works, one is required to read through the source code

line by line. This project focus on giving detail

documentation of kernel code 2.6.31 so that the time to

understand the kernel functions will be measured in

weeks and not months. For managing such huge source

code I have used a LXR tool which can be downloaded

from http://lxr.linux.no/.

The code commentary will be done according following

flow.

1 Boot Memory Allocator

1.1 Representing the Boot Map

1.2 Initializing the Boot Memory Allocator

1.3 Allocating Memory

1.4 Freeing Memory

2 Physical Page Management

2.1 Allocating Pages

2.2 Free Pages

2.3 Page Allocate Helper Functions

2.4 Page Free Helper Functions

3 Non-Contiguous Memory Allocation

3.1 Allocating A Non-Contiguous Area

3.2 Freeing A Non-Contiguous Area

4 Slab Allocator

4.1 Introduction

4.2 Slabs

4.3 Objects

4.4 Sizes Cache

4.5 Per-CPU Object Cache

4.6 Slab Allocator Initialization

4.7 Interfacing with the Buddy Allocator

5 Process Address Space

5.1 Managing the Address Space

5.2 Process Memory Descriptors

5.2.1 Allocating a Descriptor

5.2.2 Initializing a Descriptor

5.2.3 Destroying a Descriptor

5.3 Memory Regions .

5.3.1 Creating A Memory Region

5.3.2 Finding a Mapped Memory Region

5.3.3 Finding a Free Memory Region

5.3.4 Inserting a memory region

5.3.5 Merging contiguous region

5.3.6 Remapping and moving a memory region

5.3.7 Locking a Memory Region

5.3.8 Unlocking the region

5.3.9 Fixing up regions after locking/unlocking

5.3.10 Deleting a memory region

5.3.11 Deleting all memory regions

5.4 Page Fault Handler

5.4.1 Handling the Page Fault

5.4.2 Demand Allocation

5.4.3 Demand Paging

5.4.4 Copy On Write (COW) Pages

III. APPLICATIONS

1.This will reduce the amount of time a developer or

researcher needs to understand Linux Virtual memory

manager.

2.Further this study and documentation can be used to

improve some aspects of Virtual memory management.

3.Developer can even change particular part of Virtual

memory manager code for particular applications .

IV. CONCLUSION

 Very little help or code documentation available for

practically understanding an operating system one may

require an extra time for doing so. My project gives

International Journal of Computer Science & Emerging Technologies (IJCSET) 178

Volume 1 Issue 2, August 2010

detail study of kernel code 2.6.31 from point of view of

virtual memory manager (architecture independent

features) and will help to those who wants to swim in

operating system code .In future enhancement one can

modify the kernel code and recompile it to make new

version.

REFERENCES

[1] http://lwn.net/ Linux info from the source

[2]Gorman Mel. “Understanding the Linux Virtual

Memory Manager “ Prentice Hall Professional

Technical Reference 2004

[3]http://kernel.org/doc

[4]http://www.linuxhq.com/kernel/v2.4/index.html

[5]http://www.linuxhq.com/kernel/v2.6/index.html

[6]Neil Horman Understanding Virtual Memory In

Red Hat Enterprise Linux 4 Version 0.1 –

[7]http://www.perens.com/Book (Mel Gorman book

site)

[8]The Linux Kernel Source Tree. Version 2.6.31

http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.

31.5.tar.bz2

[9]Wolfgang Mauerer “Professional Linux® Kernel

Architecture “Wiley Publishing,

Archana S. Sumant is currently

doing her M.Tech at “Veermata

Jijabai Technological Institute

,Matunga , Mumbai (INDIA)

and received Bachelors’ Degree

in Computer science and

Engineering from “Walchand

College Of Engineering “,Sangli

(INDIA) in 2002. Her areas of interest are Operating

System and Database management System. She is life

member of ISTE (Indian Society Of Technical

Education).She has authored 4 National and One

International papers in Conferences.

 Pramila M.Chawan is currently

working as an Assistant Professor

in the Computer Technology

Department of “Veermata Jijabai

Technological Institute (V. J. T.

I.), Matunga, Mumbai (INDIA)”.

She received her Masters’ Degree

in Computer Engineering from V.

J. T. I., Mumbai University

(INDIA) in 1997 & Bachelors’ Degree in Computer

Engineering from V. J. T. I., Mumbai University

(INDIA) in 1991 .She has an academic experience of 18

years (since 1992). She has taught Computer related

subjects at both the (undergraduate & post graduate)

levels. Her areas of interest are Software Engineering,

Computer Architecture & Operating Systems. She has

published 14 papers in National Conferences & 4

papers in International Conferences & Journals. She has

guides 25 M. Tech. projects & 75 B. Tech. projects.

Currently she is guiding Ms. Archana Sumant’s M.

Tech. project named “Virtual Memory Management in

Linux kernel 2.6”.

